SAR image denoising using deep learning
This post is about denoising of SAR image using sevaral deep learning methods.
MoNET_pytorch
Errors
- RuntimeError: CUDA out of memory.
Tried to allocate 7.68 GiB (GPU 0; 47.37 GiB total capacity; 38.60 GiB already allocated; 7.07 GiB free; 38.62 GiB reserved in total by PyTorch)
SAR-CNN
Build environment in AutoDL
-
Create new
conda
environment:conda create --name sarcnn python=3.7
-
Activate
sarcnn
environment:source activate sarcnn
-
Optional: install
mumba
:conda install conda-forge/label/cf202003::mamba
-
Install
numpy
:conda install numpy=1.16.5
-
Install
tensorflow-gpu
:conda install tensorflow-gpu=1.13.1
-
Install
pillow
:conda install anaconda::pillow
Run SAR-CNN scripts
-
python main.py --real_sar=1 --test_dir='/autodl-fs/SAR-CNN-test/test_real/'
-
chmod -R 755 ~/autodl-fs/SAR-CNN-test/
-
(sarcnn) root@autodl-container-dc124d9a08-a11e31e5:~/autodl-fs/SAR-CNN-test# python main.py --real_sar=1 --test_dir='~/autodl-fs/SAR-CNN-test/test_real/'
-
Upload real Sentinel1-A SAR data into folder
/root/autodl-fs/SAR-CNN-test/data/real
-
Run script
/root/autodl-fs/SAR-CNN-test/main.py