Basic concepts of Machine Learning and Deep Learning
Some basic concepts of machine learning (ML) and deep learning (DL).
What is ML/DL
Evaluation
Precision, Recall and Accuracy are three metrics that are used to measure the performance of a machine learning algorithm2.
Confusion Matrix (混淆矩阵)
真正例和真反例是被正确预测的数据,假正例和假反例是被错误预测的数据。接下来的内容基本都是围绕这个四个值展开,所以需要理解这四个值的具体含义1:
- TP(True Positive):被正确预测的正例。即该数据的真实值为正例,预测值也为正例的情况;
- TN(True Negative):被正确预测的反例。即该数据的真实值为反例,预测值也为反例的情况;
- FP(False Positive):被错误预测的正例。即该数据的真实值为反例,但被错误预测成了正例的情况;
- FN(False Negative):被错误预测的反例。即该数据的真实值为正例,但被错误预测成了反例的情况。
stratified sampling (分层抽样)
分层抽样法也叫类型抽样法。它是从一个可以分成不同子总体(或称为层)的总体中,按规定的比例从不同层中随机抽取样品(个体)的方法。这种方法的优点是,样本的代表性比较好,抽样误差比较小。缺点是抽样手续较简单随机抽样还要繁杂些。定量调查中的分层抽样是一种卓越的概率抽样方式,在调查中经常被使用3。
Basic concepts of Machine Learning and Deep Learning
https://mengyuchi.gitlab.io/2023/01/25/Basic-concepts-of-Machine-Learning-and-Deep-Learning/